Antioxidants in Health and Diseases
M. Vaishali
Saveetha Dental College, Poonamallee High Road, Chennai-77
*Corresponding Author E-mail: mvaishu.70@gmail.com
ABSTRACT:
An antioxidant is a molecule that inhibits the oxidation of other molecules. Antioxidants plays a major role in maintanence of health and prevention of disease. free radicals and antioxidants are widely discussed in the clinical and nutritional literature. Antioxidants are needed to prevent the formation and oppose the actions of reactive oxygen and nitrogen species, which are generated in vivo and cause damage to DNA, lipids, proteins, and other biomolecules. Many dietary compounds have been suggested to be important antioxidants: The evidence for a key role of vitamins E and C is strong, but that for carotenoids and related plant pigments is weaker. Interest is also growing in the role of plant phenolics, especially flavonoids. Some antioxidants can exert prooxidant effects in vitro, but their physiological relevance is uncertainFree radical production occurs continuously in all cells as part of normal cellular function. However, excess free radical production originating from endogenous or exogenous sources might play a role in many diseases. Antioxidants prevent free radical induced tissue damage by preventing the formation of radicals, scavenging them, or by promoting their decomposition. This short review discuss the details about the role of antioxidants as enzymatic and non enzymaticanti oxidants with its application and it's disorders.
KEYWORDS: Free Radicals, Catalase, Super Oxide Dissmutase, Oxidative Stress.
INTRODUCTION:
Oxidation is a chemical reaction that transfers electrons or hydrogen from a substance to an oxidizing agent. Oxidation reactions can produce free radicals. In turn, these radicals can start chain reactions. When the chain reaction occurs in a cell, it can cause damage or death to the cell. Antioxidants terminate these chain reactions by removing free radical intermediates, and inhibit other oxidation reactions. They do this by being oxidized themselves, so antioxidants are often reducing agents such as thiols, ascorbic acid, or polyphenols.[1]
Although oxidation reactions are crucial for life, they can also be damaging; plants and animals maintain complex systems of multiple types of antioxidants, such as glutathione, vitamin C, vitamin A, and vitamin E as well as enzymes such as catalase, superoxide dismutase and various peroxidases. Insufficient levels of antioxidants, or inhibition of the antioxidant enzymes, cause oxidative stress and may damage or kill cells.
As oxidative stress appears to be an important part of many human diseases, the use of antioxidants in pharmacology is intensively studied, particularly as treatments for stroke and neurodegenerative diseases. Moreover, oxidative stress is both the cause and the consequence of disease.
Antioxidants are widely used in dietary supplements and have been investigated for the prevention of diseases such as cancer, coronary heart disease and even altitude sickness. Although initial studies suggested that antioxidant supplements might promote health, later large clinical trials with a limited number of antioxidants detected no benefit and even suggested that excess supplementation with certain putative antioxidants may be harmful.[2] Antioxidants also have many industrial uses, such as preservatives in food and cosmetics and to prevent the degradation of rubber and gasoline.
FREE RADICALS:
In chemistry, a radical (more precisely, a free radical) is an atom, molecule, or ion that has unpaired valence electrons or an open electron shell, and therefore may be seen as having one or more "dangling" covalent bonds.
Free radicals may be created in a number of ways, including synthesis with very dilute or rarefied reagents, reactions at very low temperatures, or breakup of larger molecules. The latter can be affected by any process that puts enough energy into the parent molecule, such as ionizing radiation, heat, electrical discharges, electrolysis, and chemical reactions. Indeed, radicals are intermediate stages in many chemical reactions.
Free radicals play an important role in combustion, atmospheric chemistry, polymerization, plasma chemistry, biochemistry, and many other chemical processes. In living organisms, the free radicals superoxide and nitric oxide and their reaction products regulate many processes, such as control of vascular tone and thus blood pressure. They also play a key role in the intermediary metabolism of various biological compounds. Such radicals can even be messengers in a process dubbed redox signaling. A radical may be trapped within a solvent cage or be otherwise bound.
ANTIOXIDANT ENZYMES:
CATALASE:
Catalases are enzymes that catalyse the conversion of hydrogen peroxide to water and oxygen, using either an iron or manganese cofactor.[3] This protein is localized to peroxisomes in most eukaryotic cells. Catalase is an unusual enzyme since, although hydrogen peroxide is its only substrate, it follows a ping-pong mechanism. Here, its cofactor is oxidised by one molecule of hydrogen peroxide and then regenerated by transferring the bound oxygen to a second molecule of substrate. Despite its apparent importance in hydrogen peroxide removal, humans with genetic deficiency of catalase-"acatalasemia" — or mice genetically engineered to lack catalase completely, suffer few ill effects.[4]
Catalase is a common enzyme found in nearly all living organisms exposed to oxygen. It catalyzes the decomposition of hydrogen peroxide to water and oxygen. It is a very important enzyme in protecting the cell from oxidative damage by reactive oxygen species (ROS). Likewise, catalase has one of the highest turnover numbers of all enzymes; one catalase molecule can convert millions of molecules of hydrogen peroxide to water and oxygen each second.
Catalase is a tetramer of four polypeptide chains, each over 500 amino acids long.It contains four porphyrinheme (iron) groups that allow the enzyme to react with the hydrogen peroxide. The optimum pH for human catalase is approximately 7, and has a fairly broad maximum (the rate of reaction does not change appreciably at pHs between 6.8 and 7.5).[5] The pH optimum for other catalases varies between 4 and 11 depending on the species.The optimum temperature also varies by species.
APPLICATIONS:
Catalase is used in the food industry for removing hydrogen peroxide from milk prior to cheese production. Another use is in food wrappers where it prevents food from oxidizing. Catalase is also used in the textile industry, removing hydrogen peroxide from fabrics to make sure the material is peroxide-free.[6]
A minor use is in contact lens hygiene - a few lens-cleaning products disinfect the lens using a hydrogen peroxide solution; a solution containing catalase is then used to decompose the hydrogen peroxide before the lens is used again.[7] Recently, catalase has also begun to be used in the aesthetics industry. Several mask treatments combine the enzyme with hydrogen peroxide on the face with the intent of increasing cellular oxygenation in the upper layers of the epidermis.
SUPEROXIDE DISMUTASE:
Superoxide dismutases (SODs) are a class of closely related enzymes that catalyze the breakdown of the superoxide anion into oxygen and hydrogen peroxide. SOD enzymes are present in almost all aerobic cells and in extracellular fluids.[8] Superoxide dismutase enzymes contain metal ion cofactors that, depending on the isozyme, can be copper, zinc, manganese or iron. In humans, the copper/zinc SOD is present in the cytosol, while manganese SOD is present in the mitochondrion. There also exists a third form of SOD in extracellular fluids, which contains copper and zinc in its active sites.The mitochondrial isozyme seems to be the most biologically important of these three, since mice lacking this enzyme die soon after birth.[9] In contrast, the mice lacking copper/zinc SOD are viable but have numerous pathologies and a reduced lifespan , while mice without the extracellular SOD have minimal defects (sensitive to hyperoxia) . In plants, SOD isozymes are present in the cytosol and mitochondria, with an iron SOD found in chloroplasts that is absent from vertebrates and yeast.[10]
ROLE IN DISEASE:
Mutations in the first SOD enzyme (SOD1) can cause familial amyotrophic lateral sclerosis (ALS, a form of motor neuron disease).[11] The most common mutation in the U.S. is A4V, while the most intensely studied is G93A. The other two isoforms of SOD have not been linked to any human diseases, however, in mice inactivation of SOD2 causes perinatal lethality and inactivation of SOD1 causes hepatocellular carcinoma. Mutations in SOD1 can cause familial ALS (several pieces of evidence also show that wild-type SOD1, under conditions of cellular stress, is implicated in a significant fraction of sporadic ALS cases, which represent 90% of ALS patients.),by a mechanism that is presently not understood, but not due to loss of enzymatic activity or a decrease in the conformational stability of the SOD1 protein. Overexpression of SOD1 has been linked to the neural disorders seen in Down syndrome.[12]
In recent years it has become more apparent that in mice the extracellular superoxide dismutase (SOD3, ecSOD) is critical in the development of hypertension.In other studies, diminished SOD3 activity was linked to lung diseases such as Acute Respiratory Distress Syndrome (ARDS) or Chronic obstructive pulmonary disease (COPD).
Superoxide dismutase is also not expressed in neural crest cells in the developing fetus. Hence, high levels of free radicals can cause damage to them and induce dysraphic anomalies (neural tube defects)[13].
COSMETIC USES:
SOD may reduce free radical damage to skin—for example, to reduce fibrosis following radiation for breast cancer. Studies of this kind must be regarded as tentative, however, as there were not adequate controls in the study including a lack of randomization, double-blinding, or placebo.[14] Superoxide dismutase is known to reverse fibrosis, perhaps through reversion of myofibroblasts back to fibroblasts.[15]
GLUTATHIONE REDUCTASE:
Glutathione reductase, also known as GSR or GR, is an enzyme (EC 1.8.1.7) that reduces glutathione disulfide (GSSG) to the sulfhydryl form GSH, which is an important cellular antioxidant.
For every mole of oxidized glutathione (GSSG), one mole of NADPH is required to reduce GSSG to GSH. The enzyme forms a FAD-bound homodimer. The glutathione reductase is conserved between all kingdoms. In bacteria, yeasts, and animals, one glutathione reductase gene is found; however, in plant genomes, two GR genes are encoded. Drosophila and Trypanosomes do not have any GR at all. In these organisms, glutathione reduction is performed by either the thioredoxin or the trypanothione system, respectively.
GLUTATHIONE PEROXIDASE:
It is a general name of an enzyme family with peroxidase activity whose main biological role is to protect the organism from oxidative damage. The biochemical function of glutathione peroxidase is to reduce lipid hydroperoxides to their corresponding alcohols and to reduce free hydrogen peroxide to water.
NON ENZYMATIC ANTIOXIDANT:
VITAMIN E:
Vitamin E is the collective name for a set of eight related tocopherols and tocotrienols, which are fat-soluble vitamins with antioxidant properties.[16][17] Of these, α-tocopherol has been most studied as it has the highest bioavailability, with the body preferentially absorbing and metabolising this form.[18]
It has been claimed that the α-tocopherol form is the most important lipid-soluble antioxidant, and that it protects membranes from oxidation by reacting with lipid radicals produced in the lipid peroxidation chain reaction.[19] This removes the free radical intermediates and prevents the propagation reaction from continuing. This reaction produces oxidised α-tocopheroxyl radicals that can be recycled back to the active reduced form through reduction by other antioxidants, such as ascorbate, retinol or ubiquinol. This is in line with findings showing that α-tocopherol, but not water-soluble antioxidants, efficiently protects glutathione peroxidase 4 (GPX4)-deficient cells from cell death. GPx4 is the only known enzyme that efficiently reduces lipid-hydroperoxides within biological membranes.[20]
VITAMIN C:
Ascorbic acid or "vitamin C" is a monosaccharide oxidation-reduction (redox) catalyst found in both animals and plants. As one of the enzymes needed to make ascorbic acid has been lost by mutation during primate evolution, humans must obtain it from the diet; it is therefore a vitamin.Most other animals are able to produce this compound in their bodies and do not require it in their diets.Ascorbic acid is required for the conversion of the procollagen to collagen by oxidizing proline residues to hydroxyproline. In other cells, it is maintained in its reduced form by reaction with glutathione, which can be catalysed by protein disulfideisomerase and glutaredoxins.[21] Ascorbic acid is a redox catalyst which can reduce, and thereby neutralize, reactive oxygen species such as hydrogen peroxide. In addition to its direct antioxidant effects, ascorbic acid is also a substrate for the redox enzyme ascorbate peroxidase, a function that is particularly important in stress resistance in plants. Ascorbic acid is present at high levels in all parts of plants and can reach concentrations of 20 millimolar in chloroplasts.[22]
GLUTATHIONE:
Glutathione is a cysteine-containing peptide found in most forms of aerobic life. It is not required in the diet and is instead synthesized in cells from its constituent amino acids.[23] Glutathione has antioxidant properties since the thiol group in its cysteine moiety is a reducing agent and can be reversibly oxidized and reduced. In cells, glutathione is maintained in the reduced form by the enzyme glutathione reductase and in turn reduces other metabolites and enzyme systems, such as ascorbate in the glutathione-ascorbate cycle, glutathione peroxidases and glutaredoxins, as well as reacting directly with oxidants. Due to its high concentration and its central role in maintaining the cell's redox state, glutathione is one of the most important cellular antioxidants. In some organisms glutathione is replaced by other thiols, such as by mycothiol in the Actinomycetes, bacillithiol in some Gram-positive bacteria, or by trypanothione in the Kinetoplastids.[24][25]
OXIDATIVE STRESS:
Oxidative stress is thought to contribute to the development of a wide range of diseases including Alzheimer's disease, Parkinson's disease,[26] the pathologies caused by diabetes,[27] rheumatoid arthritis, and neurodegeneration in motor neuron diseases.[28] In many of these cases, it is unclear if oxidants trigger the disease, or if they are produced as a secondary consequence of the disease and from general tissue damage; One case in which this link is particularly well-understood is the role of oxidative stress in cardiovascular disease. Here, low density lipoprotein (LDL) oxidation appears to trigger the process of atherogenesis, which results in atherosclerosis, and finally cardiovascular disease.[28]
Oxidative damage in DNA can cause cancer. Several antioxidant enzymes such as superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glutathione S-transferase etc. protect DNA from oxidative stress. It has been proposed that polymorphisms in these enzymes are associated with DNA damage and subsequently the individual's risk of cancer susceptibility.[29]
A low calorie diet extends median and maximum lifespan in many animals. This effect may involve a reduction in oxidative stress. While there is some evidence to support the role of oxidative stress in aging in model organisms such as Drosophila melanogaster and Caenorhabditiselegans, the evidence in mammals is less clear.[30] Indeed, a 2009 review of experiments in mice concluded that almost all manipulations of antioxidant systems had no effect on aging. Diets high in fruit and vegetables, which are high in antioxidants, promote health and reduce the effects of aging; antioxidant vitamin supplementation has no detectable effect on the aging process, so the effects of fruit and vegetables may be unrelated to their antioxidant contents. One reason for this might be the fact that consuming antioxidant molecules such as polyphenols and vitamin E will produce changes in other parts of metabolism, and it may be these other effects that are the real reason these compounds are important in human nutrition.[31]
DISORDERS:
Harmful effects may be seen in non-smokers, as a recent meta-analysis including data from approximately 230,000 patients showed that β-carotene, vitamin A or vitamin E supplementation is associated with increased mortality but saw no significant effect from vitamin C.[32] No health risk was seen when all the randomized controlled studies were examined together, but an increase in mortality was detected only when the high-quality and low-bias risk trials were examined separately. As the majority of these low-bias trials dealt with either elderly people, or people already suffering disease, these results may not apply to the general population. This meta-analysis was later repeated and extended by the same authors, with the new analysis published by the Cochrane Collaboration; confirming the previous results. These two publications are consistent with some previous meta-analyzes that also suggested that Vitamin E supplementation increased mortality, and that antioxidant supplements increased the risk of colon cancer. However, the results of this meta-analysis are inconsistent with other studies such as the SU.VI.MAX trial, which suggested that antioxidants have no effect on cause-all mortality. Overall, the large number of clinical trials carried out on antioxidant supplements suggest that either these products have no effect on health, or that they cause a small increase in mortality in elderly or vulnerable populations.[33]
While antioxidant supplementation is widely used in attempts to prevent the development of cancer, antioxidants may interfere with cancer treatments, since the environment of cancer cells causes high levels of oxidative stress, making these cells more susceptible to the further oxidative stress induced by treatments. As a result, by reducing the redox stress in cancer cells, antioxidant supplements could decrease the effectiveness of radiotherapy and chemotherapy. On the other hand, other reviews have suggested that antioxidants could reduce side effects or increase survival times.[34]
CONCLUSION:
Larger-than-recommended amounts of antioxidants need to be used earlier in life, for longer periods of time, to determine their effectiveness in arresting or preventing diseases of aging. Thus this review gives us the brief information about antioxidants including the role of enzymatic and non enzymatic antioxidants with disorders.
REFERENCE:
1 Sies, Helmut (1997). "Oxidative stress: Oxidants and antioxidants". Experimental physiology 82 (2): 291–5. PMID 9129943.
2 Jha, Prabhat; Marcus Flather, Eva Lonn, Michael Farkouh, and Salim Yusuf (1995). "The Antioxidant Vitamins and Cardiovascular Disease: A Critical Review of Epidemiologic and Clinical Trial Data". Annals of Internal Medicine 123 (11): 860–872. doi:10.7326/0003-4819-123-11-199512010-00009. PMID 7486470.
3 Chelikani P, Fita I, Loewen P (2004). "Diversity of structures and properties among catalases". Cell Mol Life Sci 61 (2): 192–208. doi:10.1007/s00018-003-3206-5. PMID 14745498.
4 Mueller S, Riedel H, Stremmel W (1997). "Direct evidence for catalase as the predominant H2O2 -removing enzyme in human erythrocytes". Blood 90 (12): 4973–8. PMID 9389716.
5 Werner Dabelstein, Arno Reglitzky, Andrea Schütze and Klaus Reders "Automotive Fuels" in Ullmann'sEncyclopedia of Industrial Chemistry 2007, Wiley-VCH, Weinheim.doi:10.1002/14356007.a16_719.pub2
6 FC; Carpenter LJ; McFiggans GB et al. (2008). "Iodide accumulation provides kelp with an inorganic antioxidant impacting atmospheric chemistry" (Free full text). Proceedings of the National Academy of Sciences of the United States of America 105 (19): 6954–8. doi:10.1073/pnas.0709959105. PMC 2383960. PMID 18458346
7 Szabó, Ildikó; Bergantino, Elisabetta; Giacometti, Giorgio Mario (2005). "Light and oxygenic photosynthesis: Energy dissipation as a protection mechanism against photo-oxidation". EMBO Reports 6 (7): 629–34. doi:10.1038/sj.embor.7400460. PMC 1369118. PMID 15995679
8 Johnson F, Giulivi C (2005). "Superoxide dismutases and their impact upon human health".Mol Aspects Med 26 (4–5):340–52. doi:10.1016/j.mam.2005.07.006. PMID 16099495.
9 Melov S, Schneider J, Day B, Hinerfeld D, Coskun P, Mirra S, Crapo J, Wallace D (1998). "A novel neurological phenotype in mice lacking mitochondrial manganese superoxide dismutase". Nat Genet 18 (2): 159–63. doi:10.1038/ng0298-159. PMID 9462746.
10 Reaume A, Elliott J, Hoffman E, Kowall N, Ferrante R, Siwek D, Wilcox H, Flood D, Beal M, Brown R, Scott R, Snider W (1996). "Motor neurons in Cu/Zn superoxide dismutase-deficient mice develop normally but exhibit enhanced cell death after axonal injury". Nat Genet 13(1): 43–7. doi:10.1038/ng0596-43. PMID 8673102.
11 Seaver, L. C.; Imlay, JA (2004). "Are Respiratory Enzymes the Primary Sources of Intracellular Hydrogen Peroxide?". Journal of Biological Chemistry 279 (47): 48742–50. doi:10.1074/ jbc.M408754200. PMID 15361522.
12. Imlay, James A. (2003). "Pathways Ofoxidativedamage". Annual Review of Microbiology 57: 395–418. doi:10.1146/annurev.micro.57.030502.090938. PMID 14527285.
13 Packer, Lester; Weber, Stefan U.; Rimbach, Gerald (2001). "Molecular aspects of alpha-tocotrienol antioxidant action and cell signalling". The Journal of nutrition 131 (2): 369S–73S. PMID 11160563.
14 Meister, A; Anderson, M E (1983). "Glutathione". Annual Review of Biochemistry 52: 711–60. doi:10.1146/ annurev.bi.52.070183.003431. PMID 6137189.
15 Meister, Alton (1988). "Glutathione metabolism and its selective modification". The Journal of Biological Chemistry 263 (33): 17205–8. PMID 3053703.
16 Herrera, E.; Barbas, C. (2001). "Vitamin E: Action, metabolism and perspectives". Journal of Physiology and Biochemistry 57 (2): 43–56. doi:10.1007/BF03179812. PMID 11579997.
17 Raha, S; Robinson, BH (2000). "Mitochondria, oxygen free radicals, disease and ageing". Trends in Biochemical Sciences 25 (10): 502–8. doi:10.1016/S0968-0004(00)01674-1. PMID 11050436
18. Brigelius-Flohé, Regina; Traber, Maret G. (1999). "Vitamin E: Function and metabolism". The FASEB Journal 13 (10): 1145–55. PMID 10385606.
19 Traber, Maret G.; Atkinson, Jeffrey (2007). "Vitamin E, antioxidant and nothing more". Free Radical Biology and Medicine 43 (1): 4–15. doi:10.1016/j.freeradbiomed.2007.03.024. PMC 2040110.PMID 17561088.
20 Seiler, Alexander; Schneider, Manuela; Förster, Heidi; Roth, Stephan; Wirth, Eva K.; Culmsee, Carsten; Plesnila, Nikolaus; Kremmer, Elisabeth et al. (2008). "Glutathione Peroxidase 4 Senses and Translates Oxidative Stress into 12/15-Lipoxygenase Dependent- and AIF-Mediated Cell Death". Cell Metabolism 8 (3): 237–48. doi:10.1016/j.cmet.2008.07.005. PMID 18762024.Meister, Alton (1994)."Glutathione-ascorbic acid antioxidant system in animals". The Journal of Biological Chemistry 269 (13): 9397–400. PMID 8144521.
21 Padayatty, Sebastian J.; Katz, Arie; Wang, Yaohui; Eck, Peter; Kwon, Oran; Lee, Je-Hyuk; Chen, Shenglin; Corpe, Christopher et al. (2003). "Vitamin C as an antioxidant: evaluation of its role in disease prevention". Journal of the American College of Nutrition 22 (1): 18–35. PMID 12569111.
22 Smirnoff, Nicholas; Wheeler, Glen L. (2000). "Ascorbic Acid in Plants: Biosynthesis and Function". Critical Reviews in Biochemistry and Molecular Biology 35 (4): 291–314. doi:10.1080/10409230008984166. PMID 11005203.
23 Gaballa A; Newton GL; Antelmann H et al. (2010). "Biosynthesis and functions of bacillithiol, a major low-molecular-weight thiol in Bacilli". Proc. Natl. Acad. Sci. U.S.A. 107 (14): 6482–6. doi:10.1073/pnas.1000928107. PMC 2851989.PMID 20308541.
24 a b Meister, Alton (1994). "Glutathione-ascorbic acid antioxidant system in animals". The Journal of Biological Chemistry 269 (13): 9397–400. PMID 8144521.
25 Fairlamb, A H; Cerami, A (1992). "Metabolism and Functions of Trypanothione in the Kinetoplastida". Annual Review of Microbiology 46: 695–729
26 Wood-Kaczmar A, Gandhi S, Wood N (2006). "Understanding the molecular causes of Parkinson's disease". Trends Mol Med 12 (11): 521–8. doi:10.1016/j.molmed.2006.09.007. PMID 17027339.
27 Giugliano D, Ceriello A, Paolisso G (1996). "Oxidative stress and diabetic vascular complications". Diabetes Care 19 (3): 257–67. doi:10.2337/diacare.19.3.257. PMID 8742574.
28 Giugliano D, Ceriello A, Paolisso G (1996). "Oxidative stress and diabetic vascular complications". Diabetes Care 19 (3): 257–67. doi:10.2337/diacare.19.3.257. PMID 8742574.
29 Khan MA, Tania M, Zhang D, Chen H (2010). "Antioxidant enzymes and cancer". Chin J Cancer Res 22 (2): 87–92. doi:10.1007/s11670-010-0087-7.
30. Rattan S (2006). "Theories of biological aging: genes, proteins, and free radicals". Free Radic Res 40 (12): 1230–8. doi:10.1080/10715760600911303. PMID 17090411.
31 Ward J (1998). "Should antioxidant vitamins be routinely recommended for older people?". Drugs Aging 12 (3)169–75. doi:10.2165/00002512-199812030-00001. PMID 9534018.
32 Bjelakovic G, Nikolova D, Gluud L, Simonetti R, Gluud C (2007). "Mortality in Randomized Trials of Antioxidant Supplements for Primary and Secondary Prevention: Systematic Review and Meta-analysis". JAMA 297 (8): 842–57. doi:10.1001/jama.297.8.842. PMID 17327526.
33 Bjelakovic G, Nikolova D, Gluud L, Simonetti R, Gluud C (2007). "Mortality in Randomized Trials of Antioxidant Supplements for Primary and Secondary Prevention: Systematic Review and Meta-analysis". JAMA 297 (8): 842–57. doi:10.1001/jama.297.8.842. PMID 17327526.
34 Block KI, Koch AC, Mead MN, Tothy PK, Newman RA, Gyllenhaal C (2008). "Impact of antioxidant supplementation on chemotherapeutic toxicity: a systematic review of the evidence from randomized controlled trials". Int. J. Cancer 123 (6): 1227–39. doi:10.1002/ijc.23754. PMID 18623084.
Received on 17.02.2014 Modified on 04.04.2014
Accepted on 08.04.2014 © RJPT All right reserved
Research J. Pharm. and Tech. 7(4): April, 2014; Page 489-493